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Abstract

Factor momentum has formed the basis of factor timing strategies. We propose

an alternative approach for timing factor portfolio returns by exploiting the infor-

mation from their portfolio characteristics. Different combinations of dimension

reduction techniques are employed to independently reduce the number of pre-

dictors and portfolios to predict. Characteristic-based models outperform factor

momentum in terms of exact predictability as well as investment performance.
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1 Introduction

The asset pricing literature has long been shaped by the idea that observable firm charac-

teristics convey information about the cross-section of expected stock returns. A common

practice in the literature is to extract the risk premium associated with these character-

istics by constructing characteristic sorted portfolios. A zero-investment, long-short (LS)

factor portfolio is created by buying and selling stocks with extreme characteristic scores

and the excess return of such a portfolio is directly associated with the risk premium of

the underlying risk factor (Fama and French, 1993). It is still debatable whether positive

returns arising from such LS strategies reflect legitimate investment opportunities or are

the result of sample and methodological alternations (Hou et al., 2020). Nevertheless,

such zero-investment, market-neutral portfolios have given rise to factor investing as they

are easily tradable. Yet, there are benefits over and above static factor investing. Stud-

ies such as Stambaugh et al. (2012), Jacobs (2015), Akbas et al. (2016) and Keloharju

et al. (2016) show that the performance of LS portfolios, and therefore the benefits from

factor investing, are significantly time-varying. More importantly, such time variation in

performance is not consistent across portfolios, allowing for substantial investment gains

from timing factor portfolio returns.1 Hence, from an investor’s perspective timing is

also important and an active factor allocation is needed in order to capitalize on the

fluctuations in LS portfolio returns.

In a factor timing context, several studies have emerged utilising the momentum in factor

portfolio returns as a way to improve on static factor investing. Avramov et al. (2017),

Arnott et al. (2021), Gupta and Kelly (2019), Ehsani and Linnainmaa (2021) and Leip-

pold and Yang (2021), all implement different variations of the factor momentum strategy

by going long or short anomalies based on their recent performance. Such strategies are

profitable due to the persistence in anomaly returns and their strong autocorrelation

1For example, Haddad et al. (2020) find that the loadings of a size portfolio on the optimal factor
timing portfolio are pro-cyclical while those of a momentum portfolio are counter-cyclical.
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structure. Nonetheless, it is still unclear whether the profitability of such strategies is

driven by a momentum effect in factor portfolio returns or simply by the difference in

the mean returns of the factors. For instance, Leippold and Yang (2021) show that the

sizable factor premia associated with factor momentum stem from holding factors with

significant average returns in the first place. Hence, the recent critique that has risen on

factor momentum has opened the way for alternative ways to time the performance of

factor portfolios.

In this paper, we create an optimal factor timing strategy, going over and above what

momentum has to offer. In doing so, we extend the predictability of stock returns from

observable firm characteristics to a portfolio level and predict factor portfolio returns

using a collection of portfolio characteristics. Given the characteristic-return relationship

that is implied by the significant factor premia, it is only natural to examine this rela-

tionship in terms of exact predictive accuracy. Specifically, the characteristics used to

sort stocks into portfolios are subsequently aggregated into portfolio characteristics and

used as predictive variables to forecast future factor portfolio returns. Hence, we assess

the joint predictability that arises from characteristics at a portfolio level and examine

the possibility that factor portfolios are predictable by characteristics other than their

own. The use of portfolios instead of individual stocks leads to a more stable risk ex-

posure over time as stocks possess an idiosyncratic component which fades when they

are concentrated into diversified portfolios. Establishing return predictability in a factor

portfolio context has important implications, not only in terms of timing those portfo-

lios, but also in terms of understanding the dynamic properties of the cross-section. A

key aspect of our methodology is the use of different dimension reduction techniques to

reduce the dimensions of both sides of the predictability problem.

We begin by reducing the number of forecasting targets, recognizing the underlying fac-

tor structure in factor portfolio returns. Instead of independently predicting individual
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anomalies, we focus our attention on the main sources of return variation by isolating

the first five Principal Components (PCs). The first five PCs capture around 67% of

the variation in factor portfolio returns (see Figure A1 in the Appendix), allowing us to

greatly reduce the dimensions of the problem at the expense of little return variation

foregone. Since the dominant PCs capture common variation in the underlying risk pre-

mia, being able to accurately predict their performance would lead to the detection of

robust predictive patterns across individual anomalies. Applying Principal Component

Analysis (PCA) to a set of factor portfolio returns to reduce their dimensions has recently

gained a lot of attention in asset pricing, with the most prominent example perhaps being

that of Haddad et al. (2020), who form PC portfolios by running PCA on a set of 50

anomalies and use their own book-to-market ratio to predict their performance. In such

a context, PCs are not just statistical factors but have an investable interpretation as

well. Specifically, as every PC is a linear combination of the underlying variables, PC

portfolios are portfolios of factor portfolios, meaning that their returns as well as their

characteristics are calculable. To calculate the returns and characteristics of PC portfo-

lios we use conventional PCA as well as the Risk Premium PCA (RPPCA) proposed by

Lettau and Pelger (2020a). PCA extracts components that explain the variation in fac-

tor portfolio returns, while RPPCA utilises information in the mean returns of the factor

portfolios on top of their variance and leads to the extraction of factors that may explain

a smaller part of the time-series variation but are important in pricing the cross-section.

The resulting PCs have higher Sharpe ratios and in our context they help us guide the

forecasting study around factor portfolios with higher average returns.

We then proceed by compressing the predictive information from the characteristics of

the PC portfolios. To achieve this, we do not only rely on PCA but employ methods that

account for the covariance structure between predictors and forecasting targets, such as

Partial-Least-Squares (PLS) (Wold et al., 1984). Given that returns possess a sizable

unpredictable component and many characteristics end up being unimportant in terms

3



of prediction, only a small fraction of the variation in the characteristic has predictive

value. Conventional PCA focuses on the variance within the predictors and can lead to

components that mix return-relevant and irrelevant variation. As a result, a large number

of components may be required to make predictions, where each component only makes

a marginal contribution. By using PLS we aim to capture only the variation in the char-

acteristics that is relevant in predicting returns, potentially resulting in sparser and more

accurate models. Apart from reducing the dimensions of the predictors by compressing

their variation into a smaller set of factors, the use of PCA and PLS also account for any

multicolinearity issues associated with raw characteristics, since the resulting components

are uncorrelated to each other.

After rotating characteristics in space using the methods mentioned above, we either use

the first characteristic component in standard predictive regressions or apply LASSO on

the whole set of components to identify the relevant subset of features for predicting

PC portfolio returns. The first case is used to investigate the predictability that arises

from observed characteristics even in the simplest case of a single predictive factor. The

use of LASSO allows for successive components to be included in the surviving subset

of predictors as the importance of each characteristic-based component is assessed based

on its contribution to minimizing the forecasting error rather than the magnitude of its

eigenvalue. Our procedure is implemented recursively and the optimal degree of coeffi-

cient shrinkage is identified separately for each PC portfolio based on a cross-validation

step. This approach has two important implications. First, the number of factors can be

different across PC portfolios, allowing for different sources of variation in factor port-

folio returns to be approximated by models of different complexity. For instance, many

characteristic-based components may be required to predict the first PC portfolio but

only a few for the second. Second, allowing for different values for the level of coefficient

shrinkage across time allows us to examine the time variation in the strength of the char-

acteristic signal overall.
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Our findings show that characteristics are extremely useful in timing PC portfolio returns

and ultimately individual anomalies. Using a collection of 72 anomalies documented in

the literature for the period 1970 to 2019, we find that the majority of them are highly

predictable by the information contained in their characteristics. Moreover, most of the

anomalies that are not predictable have low covariance with the rest of the anomaly uni-

verse and insignificant average returns, implying a lack of risk premium in the first place.

However, the underlying characteristics of these anomalies can still be important in ex-

plaining dynamics of other factor portfolios. Hence, we assess the information usefulness

of characteristics in a collective way rather than examining each of them individually as

other studies have done. Furthermore, we distinguish predictive ability in terms of exact

predictive accuracy (predicting individual returns in exact terms) and the ability the pre-

dict the cross-sectional dispersion in factor portfolio returns (differentiating winners from

losers). We find the characteristic-based models outperform factor momentum in both

terms. More concretely, characteristic-based models generate smaller forecasting errors

and result in higher cross-sectional correlations between forecasted and realized returns,

compared to factor momentum. With regards to factor momentum in particular, we find

its performance to be significantly time-varying. Specifically, the momentum signal in

factor portfolios was strong during the 90s, though it has diminished considerably in re-

cent years. In addition, although the 1-month momentum signal is the strongest overall,

according to prior literature (e.g. Gupta and Kelly (2019)), we find that the 12-month

signal actually performs better after 2010.

In terms of the different methods used, the implications of using of PCA or RPPCA to

reduce the number of portfolios to predict are minimal. Naturally, PCA focuses on port-

folios with higher variance, while RPPCA also focuses on portfolios with high average

returns. As a result, the former leads to models with slightly smaller forecasting errors

while the later leads to investment strategies with slightly higher Sharpe ratios, though
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the differences are insignificant. Yet, when it comes to reducing the number of predictors,

the dimension reduction technique matters, as PLS outperforms PCA when a single pre-

dictor is used. Even though the difference is not visible in terms of total forecasting error,

a single PCA-based predictor results in model forecasts that do not capture any cross-

sectional dispersion in factor portfolio returns. The reason is that many characteristics

that have been documented in the literature end up having no predictive value. Hence,

a single PCA-based predictor captures variation that is irrelevant in return prediction.

Nonetheless, no difference is observed between PCA and PLS when multiple components

are considered in conjunction with LASSO, suggesting that once we account for the whole

information set the rotation method becomes unimportant. After employing LASSO re-

sults improve uniformly across models, reflecting the importance of accounting for further

components as well as the benefits of regularization in dealing with over-fitting. Combin-

ing LASSO with PCA or PLS also accounts for the limitations of LASSO in the presence

of correlated predictors, since the resulting variables are orthogonal. Finally, the use of

LASSO uncovers some interesting patterns about the characteristics-returns relationship.

Specifically, the degree of coefficient shrinkage, or the required number of features, varies

significantly across time for all the PC portfolios. Hence, we observe that characteristics

work better in predicting returns in certain periods than others, which is expected given

the time-variation in factor risk premia. In some extreme cases, the number of features

goes down to zero, suggesting that at times characteristics may not convey any infor-

mation at all. Even so, our factor timing strategies are flexible enough to downgrade

information in the characteristics when their informativeness is low. Using three different

weighting schemes we find large economic gains from characteristic-based model forecasts

in terms of average returns and Sharpe ratios. For example, characteristic-based model

deliver an annualized Sharpe ratio of up to 0.73, while the best factor momentum strategy

only earns a Sharpe ratio of 0.45. Finally, factor timing strategies based on characteris-

tics show no decay in return performance over time, although many individual anomalies
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have been found empirically to do so (McLean and Pontiff, 2016).

The rest of the paper is structured as follows: Section 2 provides a comprehensive litera-

ture review on asset pricing models, dimension reduction techniques and factor portfolio

predictability. Section 3 describes the different models used and our estimation approach.

Section 4 provides an assessment of the various models in terms of forecasting ability and

investment performance and Section 5 concludes.

2 Literature review

Returns and characteristics

Our paper is related to several strands of the literature. First of all, we build on the

literature modeling asset returns as a function of observed characteristics. Traditional

methods in the literature of asset return prediction usually involve cross-sectional or

time-series regressions of future returns on a small set of lagged stock and aggregate

market characteristics. The cross-sectional approach is motivated by evidence provided by

Fama and MacBeth (1973), who show that average stock returns are associated with firm

characteristics. Empirical applications of the Fama-MacBeth procedure include Fama

and French (2008), Lewellen (2015) and Green et al. (2017), among others, who examine

the joint predictability of multiple observed characteristics. The time-series approach

has been exemplified by Welch and Goyal (2008) and Rapach and Zhou (2013), who

use a large collection of economic variables to predict the excess return of the US stock

market. Interestingly, both studies find that conventional predictive regressions fail to

provide reliable out-of-sample performance. We enrich the current setting by examining

the predictability of factor portfolios instead of individual stocks, using a large collection

of portfolio characteristics as predictors. After transforming the factor portfolios and

the characteristic into components, we find that a predictive regression approach can be

fruitful under a regularized framework.
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Dimension reduction

Secondly, we build on an emerging strand of the asset pricing literature that employs

machine learning methods to deal with the high dimensional zoo of factors. Machine

learning has surfaced in recent years in various asset pricing applications due to the lim-

itations of the standard methodologies in a high dimensional setting. Gu et al. (2020)

compare various machine learning techniques in their effort to forecast US stock returns

using a large collection of stock characteristics. Similarly, a large number of studies try

to identify the extent to which stock characteristics are associated with expected returns

by regularizing the cross-sectional regressions or the characteristic-based portfolio sorts

used in the estimation of risk premia. For instance, DeMiguel et al. (2020), Freyberger

et al. (2020) and Feng et al. (2020) employ LASSO (L1 penalty) regularization to create a

stochastic-discount-factor (SDF) with sparse characteristic exposure, with all confirming

a high degree of redundancy among characteristics. However, imposing sparsity in the

number of return predictors under a LASSO approach may not be a realistic assump-

tion after all due to the diverse characteristic space (Kozak et al., 2020). Nevertheless,

sparse models allow for a parsimonious representation of the cross-section of expected

stock returns and an easier interpretation and link to economic theories. In our empirical

application, we apply LASSO on a set of characteristic PCs instead of raw characteristics.

Hence, our approach still encourages a sparse factor structure, while allowing multiple

characteristics to have an effect on expected factor portfolio returns through their expo-

sure on the characteristic PCs.

We also build on a strand of the literature that is applying PCA on a set of stock or

portfolio returns to reduce their dimensions. Early empirical contributors to this lit-

erature include Connor and Korajczyk (1988), who apply asymptotic PCA of Connor

and Korajczyk (1986) on asset returns to extract the latent factors. More recent ex-

amples of PCA applications in asset pricing include Kozak et al. (2018), who form a

low dimensional SDF using the first few PCs of anomaly returns. Kozak et al. (2020)
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also find that a low dimensional specification in terms of PC portfolios is feasible due to

the high degree of common variation in factor portfolio returns. In general, the use of

PCA in this context is both economically and empirically motivated. Economically, the

existence of arbitrageurs in the economy implies that near-arbitrage opportunities, mean-

ing extremely high Sharpe ratios, are implausible to achieve. Hence, high Sharpe ratios

associated with low eigenvalue PCs should make no contribution in explaining returns

(Kozak et al., 2018). Still, this argument does not explicate whether high eigenvalue

PCs reflect risk or mispricing. Empirically, returns possess a spiked covariance structure,

meaning the variance-covariance matrix is dominated by a small number of large eigen-

values, separated from the rest. Combining these facts implies that asset returns should

be adequately explained by a small number of dominant PCs. We contribute on this lit-

erature by constructing PC portfolios of LS portfolios and examining their predictability.

Several recent studies also focus on modifying conventional PCA with the purpose of

making it more suitable for asset pricing applications. Kelly et al. (2019) propose a new

method of Instrumental Principal Components, allowing latent factor loadings to be time-

varying and partially dependent on firm characteristics.2 They find that only a small

number of characteristic-based factors are important in identifying a low dimensional

latent factor model. Lettau and Pelger (2020a) augment standard PCA by a cross-

sectional pricing error in order to extract factors that can simultaneously explain the

time-series variation and the cross-section of asset returns and Lettau and Pelger (2020b)

demonstrate the superiority of the estimator compared to standard PCA on a set of

37 factor portfolios. Finally, Giglio and Xiu (2021) account for omitted factors in the

estimation of risk premia by combining PCA with two-pass cross-sectional regressions.

We exploit the recent advancements in the literature by also using the RPPCA of Lettau

and Pelger to extract five factors from LS portfolio returns.

2The method is an extension of the Projected-PCA by Fan et al. (2016) and can be thought as
standard PCA on characteristic sorted portfolios.
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Factor portfolio predictability

Finally, we build on studies that look into the potential predictability of the factor portfo-

lios. Recently, factor momentum has been a workhorse in timing factor portfolio returns.

The momentum effect in factor portfolio returns is strong and has its own distinctive be-

haviour, different from that of stock momentum. For example, Arnott et al. (2021) and

Gupta and Kelly (2019) find that the effect is the strongest at the 1-month horizon even

though stocks exhibit reversals in such short intervals. Nonetheless, factor momentum

captures the effect at its purest form as it subsumes stock, industry momentum as well

as momentum found in other well diversified portfolios (Arnott et al., 2021). Further-

more, factor momentum is concentrated in the highest eigenvalue PCs of factor portfolio

returns which implies that momentum is intertwined with the covariance structure of

factor portfolios (Ehsani and Linnainmaa, 2021). Whether looking at PC portfolios or

individual factors, factor momentum can accommodate factor timing simply by buying

(selling) portfolios that have performed well (poorly) in the recent past or relative to

their peers. Such strategies deliver strong return performance and are not susceptible to

crashes as stock momentum (Gupta and Kelly, 2019). Nevertheless, using exactly the

same investment rule we show that characteristic-based forecasts provide superior infor-

mation and result in more profitable investment strategies compared to factor momentum.

Outside momentum, numerous studies have attempted to predict the performance of fac-

tor portfolios using a collection of potential predictors. Daniel and Moskowitz (2016)

forecast stock momentum using market indicators and volatility proxies, in their effort

to explain momentum crashes. Asness et al. (2017) use the value spread to construct

timing strategies for value, momentum and betting-against-beta portfolios, though they

observe little improvement upon a constant multi-style strategy. Similarly, Yara et al.

(2021) analyse the ability of the value spread to forecast the returns of the value-minus-

growth portfolio across asset classes. They find that the first principal component of

the value spread captures most of the variation in expected value returns. In a similar

10



manner, we also use the first principal component of multiple characteristics to predict

PC portfolio returns, even though we examine the possibility that further characteris-

tic components are required. In contrast with previous studies that target only specific

anomalies, we examine factor portfolio predictability across a large set of factor portfolios.

Other studies have also examined the predictability of multiple portfolios at once. Stam-

baugh et al. (2012) find that LS strategies appear to be stronger following periods of high

sentiment, with the effect being concentrated on the short leg. Kelly and Pruitt (2013)

forecast four sets of characteristic sorted portfolios using the cross-section of book-to-

market ratios and observe higher predictability for lower frequencies. Dichtl et al. (2019)

attempt to predict 20 equity factors using fundamental and technical indicators. They

distinguish between cross-sectional and time-series predictability which results in factor-

tilting and factor timing portfolio allocations, respectively. Haddad et al. (2020) construct

PC portfolios by running PCA on the time-series of 50 anomalies and find that the largest

eigenvalue PCs are the most predictable by their own book-to-market ratio.

We expand the existing framework by incorporating information across a large collection

of observable characteristics to predict a large set of factor portfolio returns. Furthermore,

we allow the effect of characteristics to be independently identified for every PC portfolio,

examining the possibility that different characteristics affect different sources of variation

in factor portfolio returns.

3 Methodology

This section presents our forecasting approach and the statistical methods used in this

study. We begin by explaining our general forecasting procedure and each subsequent

subsection introduces a new method and provides a comprehensive overview of its func-

tional form and statistical properties.
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General forecasting procedure

The main objective is to predict a large set of factor portfolio returns using a large set

of portfolio characteristics. Instead of separately predicting each factor portfolio by its

collection of characteristics we focus on the dominant components of factor portfolio

returns. Let R be a (T × N) matrix of N factor portfolio returns. Equivalently, let

Rt,. = (Rt,1, . . . , Rt,N) be a (1 × N) vector of portfolio returns at time t and R.,n =

(R1,n, . . . , RT,n) be a time-series of excess returns of the nth factor portfolio. Assuming a

linear latent factor specification, excess asset returns can be expressed as:

R = ZKW
′
K + E, (1)

where ZK is a (T × K) matrix of factor returns, WK is a (N × K) matrix of factor

loadings and E is a is a (T × N) matrix of idiosyncratic errors. The first term of the

right-hand-side reflects compensation for the exposure on systematic risk factors while

the second term reflects asset specific risk. Under the assumption that the factors and

the errors are uncorrelated, the variance-covariance matrix of asset returns can be de-

composed into a systematic and idiosyncratic part. A common practice in current finance

literature is to estimate ZK and WK directly, by applying PCA on the variance-covariance

matrix of R and retaining the dominant components (e.g. Connor and Korajczyk (1986)

and Kozak et al. (2018)). Provided that time variation in asset risk premia is driven by

exposure to time-varying aggregate risk, being able to accurately predict the dominant

components ZK allows us to form forecasts for individual anomalies through WK . By

only focusing on ZK , we isolate common sources of predictability across factor portfo-

lios and ignore spurious predictability associated with smaller PCs. Hence, consider the

eigenvalue decomposition of the variance-covariance matrix of factor portfolio returns

V ar(R) = WΛW ′, where W is a (N × N) matrix of eigenvectors and Λ is a (N × N)

diagonal matrix of eigenvalues in decreasing order. The ith i = 1, . . . , K PC portfolio is

then calculated as zi = Rwi, where wi is the ith column of W .
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Applying PCA to the variance-covariance matrix of factor portfolio returns implicitly

assumes that the mean of R is equal to zero (zero intercept no arbitrage restriction).

However, this assumption can be restrictive as the mean returns of factor portfolios can

contain valuable information about the underlying factor structure. More broadly, low

variance components may still be important in an asset pricing context and using a

variance-based criterion may not result in the extraction of true factors. We therefore

also use RPPCA to extract the latent asset pricing factors ZK . A comparison is made

between the two methods in terms of predictability and investment performance.

The first decision being made is on the optimal number of factors in (1). Specifying the

optimal number of factors is ultimately an empirical question as it depends on the un-

derlying factor structure. Bai and Ng (2002), Onatski (2010) and Haddad et al. (2020),

all develop critical value thresholds for determining the number of factors. We follow a

simple approach and focus on the first five PCs as they capture about 67% of the vari-

ation in factor portfolio returns. Selecting the first five PC portfolios is also consistent

with similar studies that perform PCA on a set of factor portfolios, e.g. Haddad et al.

(2020) and Lettau and Pelger (2020b). Hence, let Z5 = (z1, z2, . . . , z5) be the set of the 5

largest PC portfolios.

In order to forecast zt+1,i, we model PC portfolio returns as a function of observable

characteristics. Specifically, lagged characteristic scores are used to predict next period

PC portfolio returns. The characteristics of the PC portfolios are computed by combin-

ing factor portfolio characteristics according to their weights given by the ith eigenvector

wi. Let Ct be a (N ×M) matrix of M characteristics for N factor portfolios at time

t. The cross-section of characteristics for the ith i = 1, . . . , 5 PC portfolio is calculated

as H i
t,. = w′iC

t. Repeating the process for every t results in a (T ×M) matrix H i of

characteristics for each PC portfolio.
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However, using raw characteristics as inputs in standard predictive regressions would be

suboptimal due to high correlations and lack of predictive information for some of them.

Therefore, we transform the characteristics of PC portfolios into components using PCA

and PLS. This enables us to filter out any multicolinearity associated with raw char-

acteristics and reduce the dimensions of the problem even further by compressing the

information contained in the characteristics into a handful of latent factors. Hence, let

X i be a (T ×M) matrix of linear combinations of characteristics of the ith PC portfolio.

For PCA, H i is rotated into X i based on the eigendecomposition of V ar(H i), while for

PLS it is based on the eigendecomposition of cov(zi, H
i); more information on how to

obtain X i under the different methods is provided later in the section. Dominant PCA

components capture most of the variation within the characteristics, while dominant PLS

components capture most of the covariation between lagged characteristics and next pe-

riod returns. As long as most of the variation in the characteristics explains PC portfolio

returns, no significant difference should arise between the two.

The next step is to identify the most informative characteristic components for predicting

PC portfolio returns. Here, we examine two different cases. In the first case, we take

a simple stance by using only the first characteristic component of each PC portfolio

in standard bivariate predictive regressions. Though this is the sparsest specification

possible, multiple characteristics can have an effect on PC portfolio returns through

their weight on the first characteristic PC. As an alternative, we apply LASSO on the

whole set of characteristic components for each PC portfolio to identify a subset that

is useful for our forecasting objective. The optimal amount of coefficient shrinkage is

selected by conducting cross-validation on a rolling basis. It is important to highlight

that LASSO will not necessarily retain high eigenvalue characteristic PCs. Low eigenvalue

characteristic PCs can have non-zero coefficients as long as they contribute to minimizing

the forecasting error in the validation period. More details about our LASSO procedure
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can be found later in this section. Hence, the general forecasting model can be written

as:

ẑt+1,i = βi,0 + βi,mX
i
t,m + εt+1,i, (2)

where in the first case we use OLS and a single predictive factor (m = 1) and in the second

case the βs are obtained through LASSO for m = 1, . . . ,M . PC portfolio forecasts are

then extended to individual anomalies using their loadings on the dominant components

such as,

R̂t+1,. =
5∑
i=1

wiẑt+1,i. (3)

To summarize, we attempt to regularize both the left (LHS) and the right-hand side

(RHS) of the predictability problem by combining different dimension reduction tech-

niques. Regularization in the number of forecasting targets is achieved with the use PCA

or RPPCA and in the number of predictors with the use of PCA or PLS. All model

combinations are estimated using either a single or multiple predictors (via LASSO), re-

sulting in a total of eight forecasting models. Figure 1 provides a visual depiction of our

procedure that can be summarized in the following steps:

1. Reduce a set of factor portfolios to their first five components using PCA or RPPCA.

2. Estimate the characteristics of the PC portfolios using their loadings from the first

step.

3. Rotate PC portfolio characteristics using either PCA or PLS.

4. Either select the first characteristic PC or apply LASSO on the whole set of char-

acteristic PCs of each PC portfolio.

5. Produce separate forecasts for each PC portfolio using the selected number of fea-

tures.
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6. Expand these forecasts to individual factor portfolios using their loadings on each

PC portfolio.

Figure 1: Visual depiction of our modelling procedure. The figure presents the process of forecasting
factor portfolio returns using their portfolio characteristics. PC portfolios are calculated as linear combi-
nations of factor portfolios. The same weighting vectors are used to decompose the three-dimensional set
of characteristics into 5 independent matrices of characteristics (one for each PC portfolio). The matri-
ces of predictors are transformed to components and either the first component is retained or LASSO is
applied on the whole set of components to pick the those that are the most informative. Individual fore-
casts for each PC portfolio are produced and those forecasts are aggregated into factor portfolio return
forecasts using the weighting vectors that were used to aggregate factor portfolios into PC portfolios.

Model construction and number of factors via validation

We use at least 20 years (240 months) of information to estimate the (RP) PC portfolios

and their characteristics and make return predictions at t + 1. Our forecasts employ

an expanding estimation window, with the estimation sample always starting at the be-

ginning of the sample period and incorporating additional observations as they become
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available. PC portfolios are recursively re-estimated at each point in time, using an up-

dated wi i = 1, . . . , 5 based on the in-sample variance-covariance matrix of factor portfolio

returns. Notice that PC portfolio characteristics H i do not only change because of the

change in the underlying factor portfolio characteristics Cm but because of the change in

the weighting vectors wi as well. Overall, our approach is flexible enough to account for

a potentially unstable correlation structure in the factor portfolio returns.

In a similar fashion, the matrix of predictors is obtained as follows; for PCA, which only

utilizes information contained in the characteristics to extract the latent factors, charac-

teristic scores up to t are used to estimate X i. For PLS, which uses information in both

characteristics and returns, characteristics up to t − 1 and PC portfolio returns up to t

are used to estimate X i. The βs in (2) are always estimated using returns up to t and

values in X i up to t− 1. Values of X i at t are then plugged into (2) to obtain forecasts

for each PC portfolio returns at t+ 1. Hence, our forecasts are completely out of sample

and do not suffer from any look ahead bias.

Another important aspect of our estimation procedure is the use of LASSO to account

for over-fitting and control for model complexity. LASSO imposes sparsity by selecting

a subset of features and setting the remaining coefficients to zero. This is achieved by

slightly modifying the OLS objective function to incorporate a penalty for the sum of the

absolute value of the coefficients,

min
β∈RM

{
1

T
‖zi −X iβ‖2

2 − λ‖β‖1

}
. (4)

Identifying the correct value for the penalty parameter λ is critical to the performance

of our models. We select λ through a validation sample by conducting cross-validation

on a rolling basis. Specifically, before moving to the forecasting step, we further separate

the in-sample period into a training and a validation sample. The training sample is
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used to estimate the PC portfolios and characteristic PCs and the validation sample is

used to identify the degree of model complexity that should deliver reliable out-of-sample

performance. The validation sample covers the last five years (60 months) of the in-

sample period while the training sample increases by one at each iteration. At the start,

the training sample is used to forecast the first period in the validation sample subject

to a geometric sequence of λ values. The sequence of λ values is strictly positive and

terminates at a value for which all coefficients are equal to zero. Hence, our approach

examines the possibility that none of the characteristic components is relevant in pre-

dicting PC portfolio returns, in which case returns forecasts shrink down to a constant

term. The actual value of the forecasted data point is then used as part of the next

training set to forecast the subsequent point in the validation sample. After repeating

this procedure 60 times for every iteration, we pick the value of λ that minimizes the

mean-squared error in the validation sample. We then re-estimate the PC portfolios

and characteristic PCs using the whole in-sample period (estimation and validation) and

apply LASSO using the fixed value of λ to estimate βi,m and predict PC portfolios at t+1.

Notice, that LASSO is applied separately on each PC portfolio, meaning that λ and hence

the number of features can be different across PC portfolios. Essentially, our method al-

lows for different sources of variation in factor portfolio returns to be approximated by

models of different complexity, examining the possibility that characteristics are only

useful in predicting some of them. Furthermore, since LASSO is applied iteratively, λ

can also vary across time for each PC portfolio, allowing for a time-varying number of

factors depending on how strong the characteristic signal has been in the recent past.

Evidently, there are some clear benefits from combining LASSO with PCA or PLS. First

and foremost, applying LASSO on a set of components instead of raw portfolio charac-

teristics removes any multicolinearity concerns that would result in inconsistent solutions

as it uses orthogonal variables. Secondly and perhaps more importantly, even though
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the method imposes a parsimonious specification, it is still flexible enough to incorpo-

rate information from multiple characteristics through their loadings on the characteristic

components.

3.1 Dimension reduction techniques

Principal Component Analysis (PCA)

The first and most popular dimension reduction method is PCA. The method produces

linear combinations of the original data (PCs) while best preserving the covariance struc-

ture among the variables. Each PC successively contains as much new information about

the observed variables and dimension reduction can be accommodated by focusing on

the first few (dominant) PCs while omitting the rest which are usually noise-related.

Let Σ, be the variance-covariance matrix of the factor portfolio returns R. Consider the

eigendecomposition of Σ:

Σ = WΛW ′ =
N∑
i=1

λiwiw
′
i, (5)

The ith eigenvector wi, solves:

w1 = argmax
‖w1‖=1

{w′1Σw1} ,

w2 = argmax {w′2Σw2}
‖w2‖=1

s.t. w′1Σw2 = 0,

...

wN = argmax
‖wN‖=1

{w′NΣwN} s.t. w′MΣwN = 0 ∀ M < N. (6)

Practically, the solution in (6) is obtained via a singular value decomposition (SVD) of R.

The PCs are then obtained by multiplying the matrix of factor portfolio returns with the

eigenvectors, Z = RW . Notice that since W is an orthogonal matrix, this is equivalent

to regressing the factor portfolio returns on the eigenvectors.
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PCA is also used to regularize the characteristics of each PC portfolio, H i. This logic is

identical to Principal Component Regression (PCR) where the predictors are transformed

to their PCs and the coefficients of low variance PCs are set to zero. Let Qi = qi1, . . . , q
i
M

be the set of eigenvectors of the variance-covariance matrix of H i and X i = H iQi be a

(T ×M) matrix of characteristic PCs of the ith PC portfolio. Since characteristics are of

different scale, running raw PCA on H i would tilt the PCs towards the larger character-

istics as those will have significantly higher variance. For this reason, we standardize the

matrix of factor portfolio characteristics Cm cross-sectionally before calculating H i and

ultimately X i.

Risk Premium PCA (RPPCA)

In general, PCA can be used to obtain factors that best explain time-series variation in

the data. The variance-covariance matrix of factor portfolio returns can also be rewritten

as Σ = 1
T
R′R − R̄R̄′, where R̄ is an (N × 1) vector of average portfolio returns. Since

average returns are subtracted, PCA utilizes information from the second moment while

it neglects information from the first moment of the data. However, some factors may

have weak explanatory power in terms of variance if they only affect a small proportion

of assets, but still be important in an asset pricing context. In this case, conventional

PCA is unable to detect the true factors (Onatski, 2012). Under an APT framework,

exposure to systemic risk factors should be able to explain the cross-section of expected

asset returns (Ross, 1976). Hence, latent factors should be able to simultaneously capture

time-series variation and explain the cross-section of average returns.

Lettau and Pelger (2020a) propose a new estimator by augmenting PCA with a penalty

term to account for pricing errors in average returns. RPPCA is a generalization of

PCA, regularized by a cross-sectional pricing error and can be implemented by simple

eigenvalue decomposition of the variance-covariance matrix of asset returns after a simple
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transformation:

1

T
R′R + γR̄R̄′. (7)

Essentially, the method applies PCA to the variance-covariance matrix with over-weighted

means. The resulting PCs jointly minimize the unexplained variation and the cross-

sectional pricing error. The choice of the tuning parameter γ determines the relative

weight of the cross-sectional pricing error compared to the time-series error. For conven-

tional PCA γ = −1, while γ = 0 is equivalent to applying PCA to the second moment

matrix. Values of γ > −1 can lead to the detection of weak factors with high Sharpe

ratios. We opt for a constant value of γ = 10 as it provides a balance between explain-

ing time-series variation and detecting weak factors.3 The use of RPPCA should help

us focus on factor portfolios with high average returns as by definition those will have

a higher weight on dominant components. Factor portfolios with insignificant returns

are ultimately unimportant as forecasting their performance cannot translate into invest-

ment gains. However, PCA-based PC portfolios can load heavily on factor portfolios

with insignificant average returns, provided that they have high variance. Hence, the use

of RPPCA allows us concentrate on factor portfolios with superior return performance,

even if they possess low volatility.

Again, we apply SVD on 1
T
R′R+ 10R̄R̄′ and retain the first five eigenvectors to calculate

the PC portfolios zi, i = 1, . . . , 5. Since the purpose of RPPCA is to detect weak factors

within asset returns and given that characteristics are standardized due to their differ-

ence in scale, it would be insensible to apply it on H i. Instead, we apply SDV on each

1
T
H i′H − H̄ iH̄ i′, which converges back to conventional PCA.

3A value of γ = 10 is also consistent with what the authors identify as optimal in their empirical
exercise.
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Partial Least Squares (PLS)

As already discussed, one of the limitations of PCA is that it focuses on condensing the

covariation within the predictors. However, some of the characteristics may have no pre-

dictive power, meaning that PCA-based PCs can contain information that is ultimately

useless in the forecasting exercise. In contrast, PLS constructs linear combinations of the

characteristics based on their relationship with future returns by directly exploiting the

covariance between the two. The method can be used to rotate H i into linear combina-

tions that best explain zi while still being orthogonal to each other. The combination

weights for the ith PC are estimated recursively by solving:

qi1 = argmax
‖qi1‖=1

{
qi1
′H i′zizi

′H iqi1
}
,

qi2 = argmax
{
qi2
′H i′ziz

′
iH

iqi2
}

‖qi2‖=1

s.t. qi1
′H i′ziz

′
iH

iqi2 = 0,

...

qiN = argmax
‖qiN‖=1

{
qiN
′H i′ziz

′
iH

iqiN
}

s.t. qiM
′H i′ziz

′
iH

iqiN = 0 ∀ M < N. (8)

Equation (8) highlights the distinction between PLS and PCA. Specifically, by making

a comparison between (6) and (8) it is clear that PCA finds linear combinations that

maximize the variance of H i while PLS finds combination weights that maximize the

squared covariance between zi and H i. In other words, PLS diverges from the solution

that best describes H i in order to find components that can better predict future returns.

Practically, equation (8) can be efficiently solved using the SIMPLS algorithm by De Jong

(1993). Again, we calculate the PLS components X i = H iQi and either retain the first

component or apply LASSO on X i to predict each ẑt+1,i.
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3.2 Benchmark models

To examine whether characteristic-based models provide superior information compared

to factor momentum, we use two different variations of the momentum signal to compare

our models against. The first benchmark, is the 1-month momentum strategy (1mMOM),

which forms the momentum signal based on a look-back-window of 1 month. Essentially,

the return at time t is the “prediction” for the return at time t+1. The second benchmark

is the 12-month momentum strategy (12mMOM), which forms the momentum signal

based on a look-back-window of 12 months. In this case, the prediction for the return

at time t + 1 is the average monthly return of the previous twelve months. Although

there are multiple variations of factor momentum in terms of the formation period, we

believe that these two cases are the most prominent examples. Still, the above methods

provide separate anomaly forecasts, while the proposed models only do so indirectly by

predicting PC portfolio returns. In order to improve consistency across characteristic and

momentum models, we also apply both momentum strategies to the (RP) PC portfolios

and then extend the forecasts to individual anomalies as in (3). Hence, we also examine

the possibility of a stronger momentum effect on the main sources of variation of factor

portfolio returns.4

4 Empirical results

4.1 Data

We replicate 72 characteristics that have also been considered by Green et al. (2017). The

characteristics are entirely calculated from the Center of Research on Securities (CRSP)

and Compustat data. Our data set covers the 50-year period from January 1970 to

December 2019. The sample includes most of the well-documented anomalies and there-

fore minimizes the risk of portfolio selection bias. The stock universe includes common

4For instance, Ehsani and Linnainmaa (2021) observe that momentum is highly concentrated among
the first five PC-portfolios.
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stocks listed on NYSE, AMEX, and NASDAQ that have a record of month-end market

capitalization on CRSP and a non-missing and non-negative common value of equity on

Compustat. We do not consider any I/B/E/S-related anomalies due to the large volume

of missing data in the early years of the sample period. Additional information about

the characteristics can be found in Table A1 in the Appendix, including origination and

characteristic description.

For every month in our sample, stock returns at month t are matched against their re-

spective characteristics at month t−1. For accounting data, we allow at least six months

to pass from the firms’ fiscal year end before they become available and at least four

months to pass for quarterly data. We also winsorize characteristics cross-sectionally at

a 99% confidence level to account for extreme outliers. Finally, to isolate the effect of mi-

crocaps, we remove stocks with price below $5 at the portfolio formation period and use

NYSE-breakpoints to split stocks into deciles, following Fama and French (2008). These

adjustments help us robustify our inferences, since many anomalies have been found to

work better on small stocks (Fama and French, 2008).

We then move to the construction of the factor portfolios. For each anomaly, we first

group stocks into value-weighted deciles based on their characteristic exposure in the

previous month and then go long decile 10 and short decile 1 even if the characteristic is

negatively related to future returns. Such an approach requires no ex-ante information

about the relationship between characteristics and returns and results in the highest dis-

persion in factor portfolio returns. Furthermore, given that factor timing strategies can

take long and short positions on factors, the sign of factor portfolio returns is irrelevant.

Hence, strategies with a negative risk premium, such as return reversal, should on average

be allocated in the short side of our factor timing portfolio. Nonetheless, in some cases,

there may be not enough diversity in characteristic values to group stocks into deciles.

This turns out to be the case for discrete variables, like firm age in the early years of
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the sample period, or accounting variables that have a high number of zero entries, such

as characteristics based on research and development expenses. To account for this, we

allow the number of quantiles to be less than 10 for months in which the required number

of cut-off points is not reached. In other words, LS portfolio returns are calculated as long

as there are at least two different values for the same characteristic on a particular month.

Depending on the frequency of newly available information, portfolios are rebalanced ei-

ther monthly, quarterly or yearly. Similarly to computing factor portfolio returns, the

characteristics of factor portfolios can be computed by value-weighting characteristics of

stocks within each decile portfolio and then subtracting the value of the bottom decile

from the top. Notice that the portfolio that was constructed based on a particular charac-

teristic sort will also have the highest characteristic score by construction. For example,

the momentum portfolio will always have the highest momentum score compared to all

the other factor portfolios.

Figure 2 displays the average monthly returns of the factor portfolios together with the

95% confidence intervals (CIs). Out of all the factor portfolios, 12-month momentum

(mom12m) has the highest average returns followed by 6-month momentum (mom6m).

Yet, out of the 72 portfolios, only 22 have significant average returns, confirming a high

degree of redundancy among the documented factors (Hou et al., 2020). When we focus

on the out-of-sample period only, this number goes down to 10, reflecting the decay in the

performance of the anomalies over time (McLean and Pontiff, 2016). Further descriptive

statistics for the factor portfolios can be found in Table A2 in the Appendix.
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Figure 2: Average monthly returns of factor portfolios with 95% CIs for the period 01/1970-12/2019.

4.2 Performance evaluation

We examine the out-of-sample performance of our predictive models using standard fore-

cast evaluation measures. We use an in-sample window of at least 240 months, with the

initial in-sample period covering the period 01/1970-12/1989 and forecasts being obtained

out-of-sample for the period 01/1990-12/2019. As a first indication of the out-of-sample

fit of our models, we first estimate the mean-squared-error (MSE) for individual PC

portfolios as,

MSE =
1

T − 240

T−1∑
t=240

(zi,t+1 − ẑi,t+1)2, (9)

as well as Total MSE, which pools squared errors across factor portfolios and across time:
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Total MSE =
1

N(T − 240)

N∑
i=1

T−1∑
t=240

(
Ri,t+1 − R̂i,t+1

)2

. (10)

Total MSE assesses the predictive ability of each model under a grand panel framework

and therefore, is a bulk measure of the accuracy of the model-based predictions of future

factor portfolio returns. Table 1 presents the MSE results for individual PC portfolios

as well as the Total MSE under the various models. Results show that PC portfolios

associated with larger eigenvalues possess overall higher MSEs. This is due to the fact

that higher eigenvalue PCs posses higher variance and does not imply that those PCs are

less predictable. Apropos Panel A, characteristic-based models, even with one predictive

factor, deliver on average superior forecasts compared to factor momentum as indicated

by the lower Total MSE. With regards to the different dimension reduction techniques

used in the characteristic-based models, no significant difference is observed across meth-

ods in terms of MSE. The best performing strategy for the single factor case is RPPCA,

which outperforms standard PCA as well as PLS-based models. Given that we only

use the first characteristic PC, the first PLS PC should condense more return-relevant

information than that of PCA. More concretely, one would expect PLS to outperform

PCA as it utilizes the covariation of the predictors with the forecasting target, while

PCA factors capture variation among returns-related and unrelated variables. However,

no outperformance of PLS over PCA is observed out-of-sample in terms of Total MSE.

Moving to Panel B, the combination of dimension reduction techniques with LASSO

significantly improves results for all models. Predictive performance improves almost

uniformly across all PCs, highlighting the importance of accounting for further charac-

teristic components and the benefits of regularization in out-of-sample performance. It is

important to highlight that LASSO may select characteristic components other than the

first, potentially resulting in considerably different forecasts compared to the single factor

case. Here, the best performing model is the combination of PCA with PLS, though it
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outperforms the rest by only a small margin. Overall, results in Panel B confirm that

imposing a sparse or constant factor structure may not be a realistic assumption in the

context of asset return prediction.

Finally, Panel C displays the Total MSE for the momentum strategies. Previous month

returns provide unreliable forecasts for next period returns as suggested by significantly

higher Total MSE. Nonetheless, applying the 1-month momentum signal on the 5 (RP)

PC portfolios and then expanding the forecasts to individual anomalies slightly improves

performance. When returns are averaged over the past 12 months, results improve signifi-

cantly though they still fall behind the characteristic-based model forecasts. Interestingly,

when momentum is applied on the (RP) PC portfolios instead of individual anomalies re-

sults improve for both the 1-month and the 12-month case. Hence, the momentum effect

is concentrated in the main sources of variation in factor portfolio returns and applying

the momentum signal on the PC portfolios results in more accurate forecasts.

PC1 PC2 PC3 PC4 PC5 Total

Panel A: Single factor
PCA 56.189 15.193 9.816 5.029 4.304 1.946
PCA-PLS 57.466 15.114 9.967 5.017 4.357 1.965
RPPCA 56.512 12.506 10.291 3.823 5.258 1.943
RPPCA-PLS 57.774 12.392 10.614 3.929 5.303 1.965

Panel B: Time-varying number of factors using LASSO
PCA 54.129 14.796 9.569 4.884 4.350 1.907
PCA-PLS 54.691 14.417 9.515 4.852 4.155 1.906
RPPCA 55.643 12.543 10.102 3.764 5.082 1.925
RPPCA-PLS 55.434 11.739 10.183 3.772 5.100 1.912

Panel C: Momentum strategies
1mMOM 3.657
1mMOM-PCA 103.187 26.401 22.147 10.104 8.720 3.057
1mMOM-RPPCA 104.050 22.923 19.562 9.263 10.932 3.031
12mMOM 2.063
12mMOM-PCA 60.559 15.375 10.694 5.184 4.520 2.026
12mMOM-RPPCA 60.983 12.655 10.948 4.125 5.514 2.024

Table 1: Out-of-sample MSE for PC portfolios and Total MSE across all anomalies for the period
01/1990-12/2019 multiplied by 1000. Panel A displays results using a single latent factor to predict PC
portfolio returns. Panel B shows the results where the optimal number of factors is selected by applying
LASSO on the set of latent factors. Panel C displays results of momentum strategies where 1m is based
on the past period return and 12m is based on the past 12 month average.
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Whereas Table 1 accommodates a general quantitative comparison of the predictive per-

formance of the various models, it is also important to assess the statistical significance

of the differences among model forecasts. To make pairwise comparisons of the out-of-

sample predictive accuracy we use the adapted Diebold and Mariano (DM) test by Gu

et al. (2020), which compares the cross-sectional average error differential between two

models. The DM test statistic between models (1) and (2) is defined as DM12 = d̄12/σ̂d̄12 ,

where d̄12 and σ̂d̄12 are the mean and standard deviation of the error differential, defined

as:

d12,t+1 =
1

N

N∑
i=1

((
ê

(1)
n,t+1

)2

−
(
ê

(2)
n,t+1

)2
)
, (11)

where
(
ê

(1)
n,t+1

)2

and
(
ê

(2)
n,t+1

)2

denote the prediction error of factor portfolio return n at

time t+ 1 under model (1) and (2) respectively.

Table 2 reports the results from the DM-test for pairwise comparisons between the dif-

ferent models. For conciseness, we only consider the models that employ LASSO from

the proposed models since they outperform the single-factor models in terms of MSE. A

positive value for the DM test statistic indicates that the column model outperforms the

row model and the asterisks indicate statistical significance at a 10% (single), 5% (double)

and 1% (triple) level, respectively. The first result from Table 2 is that characteristic-

based models provide fairly similar return estimates, resulting in statistically insignificant

differences across model forecasts. The second result is that characteristic-based models

provide superior predictions compared to factor momentum and the difference is statisti-

cally significant in all cases. Hence, we can conclude the underlying information conveyed

in the characteristics is the main driver of the outperformance of the proposed models

over factor momentum while the different dimension reduction techniques only play a

complementary role.
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PCA PCA-PLS RPPCA RPPCA-PLS 1mMOM 1mMOM-PCA 1mMOM-RPPCA 12mMOM 12mMOM-PCA

PCA-PLS −0.10
RPPCA 1.35 1.26
RPPCA-PLS 0.34 0.61 −0.93
1mMOM 7.05*** 7.19*** 6.94*** 7.17***
1mMOM-PCA 5.20*** 5.33*** 5.09*** 5.30*** −14.52 ***
1mMOM-RPPCA 5.08*** 5.20*** 4.97*** 5.18*** −14.76 *** −2.61 ***
12mMOM 2.73*** 2.99*** 2.40** 2.93*** −6.73 *** −4.70 *** −4.58 ***
12mMOM-PCA 2.24** 2.47** 1.88* 2.39** −6.85 *** −4.86 *** −4.74 *** −4.57 ***
12mMOM- RPPCA 2.17** 2.40** 1.83* 2.34** −6.86 *** −4.87 *** −4.75 *** −4.52 *** −0.81

Table 2: Adapted Diebold-Mariano test for models that employ LASSO and factor momentum strate-
gies. The table displays the adapted DM-statistic that compares the predictive performance of the
column model with the row model. A positive value indicates that the column model out performs the
row model. The asterisks, indicate statistical significance at a 10% (single), 5% (double) and 1% (triple)
level for a 2-tail test.

Nevertheless, predicting anomaly returns is of interest as long as it accommodates the

construction of a profitable investment strategy. Specifically in asset pricing, the focus of

interest is not on obtaining accurate predictions for individual returns, but rather on con-

structing portfolios with good risk-return properties (Nagel, 2021). Put differently, we are

more interested in predicting cross-sectional differences in returns rather than predicting

individual returns in exact terms. In that sense, Total MSE is just a distance measure

that does not reflect whether models can distinguish strong from weak performers. Con-

sequently, models that yield smaller Total MSE do not necessarily yield better portfolios

in terms of average returns or Sharpe ratios. This argument also explains why 1-month

factor momentum has been found empirically to be the most profitable even though our

results show that it has the highest Total MSE.5 Hence, momentum strategies may fail to

predict factor portfolio returns in exact terms but may be able to rank anomalies better

than the proposed models do.

To shed more light into this claim, Table 3 shows the percentage of times that the sign of

factor portfolio returns was identified correctly as well as the average cross-sectional cor-

relation between forecasted and realised returns. The first measure examines the ability

of the models to predict the direction of factor portfolio returns and the second measure

examines whether model-based forecasts capture the cross-sectional dispersion in factor

portfolio returns. First, Table 3 demonstrates the superiority of PLS over PCA for the

5See, for example, Gupta and Kelly (2019).

30



RHS in the single factor case. Although PCA and RPPCA possess smaller Total MSEs

than their PLS counterparts, they actually fail to predict any cross-sectional dispersion

in factor portfolio returns or even identify the return direction. Hence, results show the

ability of PLS to extract a single characteristic-based factor that is more informative

about next period returns and raise questions about the suitability of aggregate forecast

accuracy metrics in asset pricing. Nevertheless, accounting for further components under

a LASSO approach harmonizes performance across models, with PLS slightly outper-

forming PCA. Factor momentum displays similar performance with the proposed models

in terms of proportion of correct sign, although average cross-sectional correlations are

lower. The correlation is higher for the 1-month signal, while it diminishes when the signal

(either 1month or 12-month) is applied on the PC portfolios instead of individual anoma-

lies, contradicting the results in Table 1. Overall, results confirm that characteristic-based

models can better distinguish winners from losers compared to factor momentum.

Proportion of correct sign Average cross-sectional correlation

Panel A: Single factor
PCA 49.90 0.70
PCA-PLS 52.74 9.12
RPPCA 50.40 2.31
RPPCA-PLS 52.75 9.17

Panel B: Time-varying number of factors using LASSO
PCA 52.19 7.83
PCA-PLS 51.95 9.04
RPPCA 52.23 7.74
RPPCA-PLS 52.24 8.51

Panel C: Momentum strategies
1mMOM 51.88 5.98
1mMOM-PCA 51.61 5.70
1mMOM-RPPCA 51.87 5.81
12mMOM 52.40 5.43
12mMOM-PCA 51.45 3.74
12mMOM-RPPCA 51.61 3.92

Table 3: Percentage of correct sign identifications and average cross-sectional correlation. Panel A
displays results using a single latent factor to predict PC portfolio returns. Panel B shows the results
where the optimal number of factors is selected by applying LASSO on the set of latent factors. Panel C
displays results of momentum strategies where 1m is based on the past period return and 12m is based
on the past 12 month average.
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So far, forecasting performance evaluation is based on composite measures that do not

explicate the degree to which individual anomalies are predictable. Ultimately, we are

interested in the predictability of individual factor portfolios based on PC portfolio fore-

casts. As a measure of individual factor portfolio predictability, we estimate the relative

mean-squared-errors (r-MSE) for all anomalies under the different models. We define r-

MSE as the sum of return differences between the squared error and the realized squared

returns:

r-MSE =

∑T−1
t=240

((
Ri,t+1 − R̂i,t+1

)2

−R2
i,t+1

)
∑T−1

t=241R
2
i,t+1

=

∑T−1
t=240

(
Ri,t+1 − R̂i,t+1

)
∑T

t=240R
2
i,t+1

2

− 1. (12)

One way to understand r-MSE is as a measure that benchmarks model forecasts against a

return forecast of zero. The measure is capped at –1, with negative values indicating that

the underlying model takes a perfect stance in predicting next period returns. Intuitively,

as long as the underlying model can predict the sign of returns correctly and does not

overshoot above 2 × Ri,t, r-MSE will be negative. Figure 3 displays a heat-map with

the r-MSE for individual anomalies under the proposed models that employ LASSO.

For comparison, we also show the r-MSE for 12mMOM-RPPCA, which had the smallest

Total MSE and hence the best r-MSE out of the benchmark models. Negative values are

highlighted in green while positive values are in red. Apropos Figure 3, expanding PC

portfolio return forecasts to individual anomalies reveals predictive patterns in a robust

and systematic way. In line with Haddad et al. (2020), we observe substantial anomaly

predictability and find many predominant anomalies, such as size (mve), value (bm) and

momentum (mom12m) to be highly predictable by observed characteristics. For factor

momentum, the number of unpredictable anomalies is significantly larger and the degree

of predictability diminishes even for the anomalies that remain predictable. Furthermore,
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factor portfolios that are unpredictable by characteristics remain unpredictable under

factor momentum, implying that the momentum signal does not provide any distinct

information that cannot be found in other characteristics.
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Figure 3: Relative mean-squared-errors for individual anomalies under the characteristic-based models
that employ LASSO and 12mMOM-RPPCA. Positive values (in red) show lack of predictive ability while
negative values (in green) show predictive ability of the underlying model for a given factor portfolio.

Overall, results show that anomalies are predictable to a high extent. Depending on

the method used individual anomaly predictability changes, with PCA working better

for the LHS and PLS for the RHS. Consistent with Total MSE results, PCA-PLS has

the lowest r-MSE while RPPCA has the highest. Still, RPPCA delivers negative r-MSE

for anomalies with high average returns (in absolute terms) in the out of sample period.

In fact, r-MSE estimates are significantly more correlated with absolute average returns

when RPPCA is used for the LHS, reflecting the ability of the method to extract com-
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ponents that account for the difference in average returns of the factors. When PCA

is used for the LHS, r-MSE is more correlated with factor portfolio volatility, reflecting

the variance maximization objective. Finally, almost all models fail to predict anomalies

that are based on a % change in accounting variables such as % change in the quick

ratio (pchquick) and % change in sales minus % change in inventory (pchsale pchinvt),

among others, located in the lower half of the heat-map. These portfolios have returns

indistinguishable from zero and low covariance with the rest of the anomaly universe. As

a result, they do not load heavily on the first five components and their performance is

not adequately captured by PC portfolio forecasts.

We then examine the implications of applying LASSO on the sets of characteristic com-

ponents in terms of model complexity. Our approach allows for the number of features

to vary across factor portfolios and across time, enabling us to see when the character-

istic signal is strong and when it diminishes. Figure 4 displays the number of non-zero

coefficients for PC and RP PC portfolios when PCA and PLS are used for the RHS

in the out-of-sample period. Each line chart shows the number of characteristic-based

components that minimize the MSE in the validation period without specifying which

these components are. Results from Figure 4 confirm the existence of significant time

variability in the required number of features across time and across PC portfolios. The

time variation in the number of features by itself implies that the predictive ability of

characteristics is inconstant, something that is expected given the time variation in factor

portfolio risk premia. Interestingly, at certain periods the number of features falls down

to zero, implying that at times characteristics provide no predictive information at all

and the PC return forecasts shrink down to an intercept term. Conversely, a high number

of features implies that a lot of the variation in the characteristics is useful in predicting

PC portfolio returns. Such peaks and troughs in the number of features are observed at

different points in time for the different PC portfolios, which implies that the importance

of characteristics is also inconstant across the main sources of variation and that each
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source should be approached independently in terms of model specification. Finally, with

regards to the different methods used for the RHS, it is evident that PCA uses on average

more features and has higher variability in the number of features across time compared

to PLS. PCA components mix return-relevant and irrelevant information, making the

selection of the optimal number of features more sensitive to the validation sample and

as a result less stable. PLS condenses the characteristic information into fewer PCs than

PCA and is more stable over time, although there is still significant time variation in the

number of components being used.

Figure 4: Number of features for each PC portfolio under the different models. The number of features
is identified by recursively applying LASSO on the set of components and picking the penalty factor that
minimizes the mean-squared-error in the validation period.
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4.3 Investment performance

In this section, we assess the performance of each model in terms of economic rather than

statistical contribution and examine how return forecasts can be translated into factor

timing strategies. We construct three different strategies and assess their performance

using a monthly holding period and standard portfolio evaluation measures.

The first strategy is a simple long-short strategy (LSS), or a LS portfolio of factor port-

folios. Factor portfolios are grouped into equally-weighted deciles based on their return

forecasts and a long-short strategy (P10-P1) is constructed that goes long the top 10%

and short the bottom 10% of the anomalies. Such a strategy focuses on the extremes

of the conditional returns distribution only and neglects factor portfolios that lie in the

middle. Hence, LSS will work well as long as the models can identify anomalies with

very high or very low returns at each period even if they are indecisive about anomalies

with returns close to zero. It is also important to highlight that characteristics that are

negatively associated with expected returns, like size or asset growth, will usually be

located in the short leg, while characteristics that are positively associated with returns,

like momentum, will be located in the long leg. Still, depending on the underlying change

in their characteristics, portfolios with positive average returns can be left out of the long

leg or even move to the short leg. For example, momentum may stay out of the investible

portfolios in one month if the signal is weak or even be shorted if expected returns for

momentum are negative. Hence, our timing strategy allows for a dynamic selection of

portfolios and accounts for variations in factor portfolio performance.

The second investment strategy is similar to the time-series factor momentum (TSFM)

strategy by Gupta and Kelly (2019). TSFM scales factor portfolio returns Rt+1,. according

to return forecasts R̂t+1,.. The scaling vector st,n is obtained by dividing return forecasts

by individual factor in-sample monthly volatility and capping them at ±2, as shown
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below:

st,n = min

(
max

(
1

σt,n
R̂t+1,n,−2

)
, 2

)
. (13)

The strategy goes long factors with positive scores and short factors with negative scores.

The scores are rescaled to form unit dollar weights for the long and the short leg. Specifi-

cally, positive scores are divided by the sum of the positive scores and the negative scores

are divided by the sum of negative scores. Multiplying next period factor portfolio returns

by their respective weights reveals the return of the strategy:

TSFMt+1 =

∑
n 1{st,n>0}Rt+1,n × st,n∑

n 1{st,n>0}st,n
−
∑

n 1{st,n≤0}Rt+1,n × st,n∑
n 1{st,n≤0}st,n

. (14)

The main difference between LSS and TSFM is that, while both are technically long-

short, TSFM invests in the whole universe of factor portfolios and not in factor portfolios

with extreme return forecasts only. Furthermore, the number of factor portfolios in each

leg, as well as the relative weights, can be different for TSFM while they remain con-

stant under LSS. More concretely, the sign of the return forecast determines whether the

anomaly will be bought or sold while the magnitude of the return determines the rela-

tive weight. Hence, under TSFM the long and the short leg can have a disproportional

number of constituents and in extreme cases the strategy can converge to a long or short

only. Lastly, individual factor volatility can have an effect on portfolio weights as higher

volatility will result in smaller z-scores other things equal. Nevertheless, this approach

still disregards the covariance structure of the factor portfolios, possibly resulting in ex-

cessive volatility.

The last strategy, also in Gupta and Kelly (2019), is the cross-sectional version of TSFM

(CSFM). The main difference between CSFM and TSFM is that the cross-sectional me-

dian is subtracted from return forecasts before they are being transformed into z-scores.

This strategy takes positions in factor portfolios that have out/under-performed relative

to their peers. For example, if return forecasts are positive for all factor portfolios then
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TSFM will take a long position in all of them, while CSFM will go long only those with

above median return forecasts and short the rest. Hence, even if the models cannot iden-

tify the sign correctly, this strategy will still be profitable if forecasts are consistent in

relative terms, similarly to LSS.

st,n = min

(
max

(
1

σt,n
R̂t+1,n −median(R̂t+1,.),−2

)
, 2

)
(15)

Table 4 presents the portfolio evaluation measures for the various models under the three

strategies. Out of the three strategies, LSS delivers the highest average return while

CSFM and TSFM have higher Sharpe ratios. The high average monthly return of the

LSS strategy confirms that the models correctly identify the factor portfolios in the ex-

tremes of the conditional return distribution. Even though model forecasts do not result

in the exact classification of anomalies across the whole spectrum of the distribution, as

implied by the relatively low average cross-sectional correlations, they are able to distin-

guish anomalies with high returns in absolute terms. Nonetheless, factor portfolios with

average returns close to zero are unimportant from an investing perspective and little is

sacrificed by not being able to properly rank them or forecast their performance. The

higher Sharpe ratios for TSFM and CSFM are due to the lower volatility of these strate-

gies as they invest in a higher number of factor portfolios and therefore enjoy a larger

diversification benefit. Furthermore, TSFM and CSFM strategies have a higher hit-rate

and a lower max drawdown compared to LSS, implying more consistent performance

over time. However, these strategies inevitably end up taking positions in anomalies with

weak performance, resulting in lower average returns.

Looking at Panel A, results confirm the superiority of PLS over PCA for the RHS in the

single factor case. Evidently, models based on a single factor that concentrates the varia-

tion among multiple characteristics are unable to predict the cross-sectional dispersion in

factor portfolio returns, implying that a lot of variation in the characteristics is irrelevant

38



in asset return prediction. As a result, strategies based on PCA and RPPCA deliver re-

turns indistinguishable from zero, with returns for PCA even going to the negative side.

Conversely, when PLS is used for the RHS all strategies deliver the positive and signifi-

cant returns, reflecting the ability of the method to concentrate return-relevant variation

into a single predictor. Comparing the two PLS-based models, PCA-PLS delivers higher

average returns while RPPCA-PLS has higher Sharpe ratios.

The first conclusion from Panel B is that the use of further components in combination

with LASSO uniformly improves investment performance across all models. This result is

also consistent with the improvement in forecasting performance, although the best per-

forming model investment-wise is not necessarily the one with the smallest Total MSE.

All strategies deliver highly significant returns, surpassing the t-value threshold of three

by Harvey et al. (2016). Still, depending on the strategy, relative model performance

changes. For example, PCA delivers the highest return under LSS and TFSM, while

PCA-PLS delivers the highest return under CFSM. Similarly, RPPCA and RPPCA-PLS

have the highest Sharpe ratios under TFSM and CFSM, although PCA has a marginally

higher Sharpe ratio under LSS. More generally, the use of PCA for the LHS leads to in-

vestment strategies with higher average returns while the use of RPPCA leads to higher

Sharpe ratios, irrespective of the strategy or the RHS model. Furthermore, although

strategies that utilize PCA for the LHS have higher volatility, they also have a higher

hit-rate and a lower max drawdown, reflecting higher consistency and lower downside

risk. Overall, results are now similar across methods, suggesting that once further com-

ponents are considered no significant difference arises across methods.

In line with prior literature (e.g. Gupta and Kelly (2019)), factor momentum results in

Panel C show that the effect is the strongest for the 1-month formation period. The

1-month momentum signal outperforms the 12-month, whether applied to individual

anomalies or (RP) PC portfolios. The 12-month factor momentum even underperforms
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the 12-month stock momentum (mom12m), as it produces low average returns and in

many cases insignificant. Surprisingly, applying the momentum signal to PC portfo-

lios has an inconsistent effect on investment performance. For the 1-month momentum,

return performance improves slightly while for the 12-month momentum performance de-

teriorates. Comparing results across panels, 1-month momentum displays similar return

performance with the PLS-based single factor models, although the former have higher

Sharpe ratios and the latter lower max drawdown. Nonetheless, characteristic-based

models that employ LASSO outperform factor momentum under all three strategies,

demonstrating the benefits of conditioning factor portfolio returns on observable char-

acteristics under a regularized framework. Even more importantly, by comparing the

results in Table 4 to Table A2, it is evident that characteristic-based factor timing strate-

gies deliver investment performance over that of any individual factor portfolio.

In order to compare the performance of the various models across time, Figure 5 presents

the cumulative return performance of the factor timing portfolios under the three invest-

ment strategies. For conciseness, we only display the performance for the characteristic-

based models that employ LASSO and factor momentum. Graphs to the left show the

cumulative performance over the whole out-of-sample period and graphs to the right focus

on the last ten years. As it can be seen from the graphs, 1-month momentum outper-

forms characteristic-based models in the early years of the out-of-sample period, up until

the late 90s. A spike in performance occurs around 2000 for all strategies, during the

buildup of the dot-com bubble. Interestingly, unlike factor momentum, characteristic-

based models do not plummet after the burst and remain above thereafter. Furthermore,

the performance of all strategies is relatively unaffected by the 2008 financial crisis and

a second spike in performance is observed as the economy enters the recovery phase in

2009. Hence, our strategies work well in periods of financial turmoil while still enjoying

the upside potential of a bull market.
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Finally, factor timing portfolios based on characteristics exhibit strong return perfor-

mance even after the 2010 period. Looking at graphs in the right panel of Figure 5,

characteristic-based models display a positive trend in later years, while factor momen-

tum strategies remain relatively stagnant. Even the worst characteristic-based model

outperforms the best momentum model under all three strategies, with the difference

being more pronounced for the LSS strategy, as it focuses on the most prominent subset

of factor portfolios only. With regards to factor momentum, no significant difference is

observed between the 1-month and the 12-month signal in later years of the out-of-sample

period. In fact, for TSFM and CSFM 12mMOM-PCA has the highest cumulative returns

out of all momentum variations, suggesting that the superiority of the 1-month signal

has faded in recent years. Out of all models, RPPCA has the highest cumulative returns

in the last 10 years whilst it was underperforming in the early years of the out-of sample

period. Overall, factor timing strategies based on observed characteristics yield positive

returns in later periods, even though most factors have been found empirically to die out

over time (McLean and Pontiff, 2016).
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Average Return Standard Deviation Sharpe Ratio t-statistic Hit-Rate Max Drawdown

LSS TSFM CSFM LSS TSFM CSFM LSS TSFM CSFM LSS TSFM CSFM LSS TSFM CSFM LSS TSFM CSFM

Panel A: Single factor
PCA -0.10 -0.03 -0.01 7.23 4.14 4.09 -0.01 -0.01 -0.00 -0.26 -0.13 -0.02 52.37 52.92 52.65 80.99 47.64 43.94
PCA-PLS 1.16 0.74 0.76 8.57 5.27 5.25 0.13 0.14 0.14 2.55 2.65 2.75 57.66 59.05 59.61 41.09 33.83 33.01
RPPCA 0.20 0.20 0.21 5.64 3.11 3.15 0.03 0.06 0.07 0.66 1.21 1.29 54.32 54.32 56.55 46.54 27.73 26.68
RPPCA-PLS 1.12 0.73 0.74 8.28 4.81 4.81 0.13 0.15 0.15 2.55 2.87 2.93 55.15 58.22 60.17 37.46 30.31 29.79

Panel B: Time-varying number of factors using LASSO
PCA 1.47 0.97 0.95 8.16 5.01 4.96 0.18 0.19 0.19 3.40 3.65 3.64 55.71 56.82 55.99 16.76 13.93 12.16
PCA-PLS 1.38 0.96 0.97 8.22 4.99 4.98 0.17 0.19 0.19 3.18 3.66 3.68 61.00 62.67 61.56 15.00 13.19 12.70
RPPCA 1.21 0.84 0.83 7.06 4.01 4.00 0.17 0.21 0.21 3.26 3.99 3.93 57.66 60.72 59.89 38.11 22.24 22.25
RPPCA-PLS 1.23 0.84 0.86 6.89 4.04 4.09 0.18 0.21 0.21 3.39 3.96 3.98 60.72 61.84 61.00 26.77 17.26 17.16

Panel C: Momentum strategies
1mMOM 1.06 0.56 0.58 8.81 4.95 4.96 0.12 0.11 0.12 2.28 2.13 2.22 57.10 56.82 57.10 18.45 16.94 17.32
1mMOM-PCA 1.13 0.64 0.65 9.24 5.53 5.54 0.12 0.12 0.12 2.32 2.20 2.22 57.38 55.71 54.60 25.74 19.91 19.82
1mMOM-RPPCA 1.12 0.64 0.66 9.45 5.47 5.48 0.12 0.12 0.12 2.25 2.21 2.27 55.99 55.71 56.82 24.97 19.06 18.69
12mMOM 0.84 0.67 0.67 8.69 5.08 5.12 0.10 0.13 0.13 1.84 2.51 2.48 55.43 55.99 56.82 25.96 17.89 18.28
12mMOM-PCA 0.76 0.59 0.58 9.40 5.92 5.85 0.08 0.10 0.10 1.53 1.88 1.89 52.65 53.76 53.20 36.46 28.23 27.61
12mMOM-RPPCA 0.76 0.60 0.59 9.31 5.63 5.53 0.08 0.11 0.11 1.54 2.03 2.01 54.60 51.81 51.81 31.10 24.77 24.86

Table 4: Portfolio evaluation measures for long-short (LSS), time-series (TSFM) and cross-sectional (CSFM) strategies under the different models for
the sample period 1990-2019. Panel A displays results using a single latent factor to predict PC portfolio returns. Panel B shows the results where the
optimal number of factors is selected by applying LASSO on the whole set of latent factors. Panel C displays results of factor momentum strategies.
Average Return: average monthly return, Standard Deviation: monthly standard deviation, Sharpe ratio: monthly Sharpe ratio, t-statistic: t-statistic on
H0 : Average Return = 0, Hit-Rate: percentage of the total number of occasions that the strategy resulted in positive returns, Maxdrawdown: maximum
cumulative loss. The best performing model for each metric under each strategy is highlighted in bold.
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Figure 5: Cumulative return performance of factor timing strategies. The figure displays the performance of LSS, TSFM and CSFM for characteristic-
based models using LASSO and factor momentum. Graphs to the left display the cumulative return performance over the whole sample period (1990-2019)
and graphs to the right display the cumulative performance over the last ten years of the sample period (2010-2019). All strategies begin with a zero
dollar investment.
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5 Conclusion

We investigate the predictability of factor portfolios from their own portfolio character-

istics, trying to go over and above factor momentum. Our approach offers a natural

continuation to the stock return predictability problem and our findings shed light on

the evolution of the underlying return drivers over time. Under our empirical framework,

a large collection of stock characteristics is used to initially construct the LS portfolios

and subsequently to predict their performance. Instead of focusing on a single predic-

tive signal to time factor portfolio returns, we simultaneously use the whole universe of

characteristics, examining the possibility that factor portfolios are predictable by char-

acteristics other than their own.

A key aspect of our methodology is the reduction of the dimensions of the predictabil-

ity problem, which we achieve by independently shrinking the number of predictors and

forecasting targets. Dimension reduction in the number of forecasting targets is attained

by focusing on the main sources of return variation in terms of PC portfolios. The infor-

mation in the characteristics is then compressed into a handful of latent factors with the

use of different dimension reduction techniques, such as PCA and PLS. Such an approach

allows us to combine information across a large collection of characteristics, while still

accounting for potential multicolinearity or redundancy among the predictors. Hence, we

conduct a comparative analysis not only of factor momentum and characteristic-based

models but also of different machine learning methods in general.

Our approach provides a new framework for dealing with panel data, allowing each source

of variation to be approximated by models of different complexity. By using a flexible

model specification that combines LASSO with dimension reduction techniques, we allow

the number of predictors to vary across PC portfolios and over time. Results show that

indeed the characteristics’ signal strength differs across PC portfolios and even within
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the same PC portfolio the characteristic-return relationship is significantly time-varying.

However, our models account for this by under- or over-weighting information contained

in the characteristics through adjusting the degree of coefficient shrinkage. We find this

approach to be especially fruitful as it considerably improves results over a static single

latent factor model.

In terms of factor portfolio predictability, we observe significant benefits from timing

factor portfolio returns using observed characteristics. Specifically, we find that the dom-

inant PC portfolios are highly predictable by the information contained in their char-

acteristics and that this predictability can be easily extended to individual anomalies.

Under all methodological alternations, forecasts based on characteristics yield far smaller

MSEs and result in factor timing strategies with higher average returns and Sharpe ra-

tios, compared to factor momentum. Furthermore, the investment performance of our

factor timing strategies is superior to that of any individual anomaly, demonstrating the

benefits of timing over static factor investing. Finally, the use of factor momentum as a

benchmark also reveals a relative instability in the strength of the momentum signal, as

the optimal look-back window varies across time.

In terms of different methods used, for the LHS, PCA results in smaller MSEs and higher

returns when combined with LASSO, while RPPCA results in higher Sharpe ratios, even

though the differences are marginal. For the RHS, PLS outperforms PCA when a sin-

gle predictor is used as PCA ends up capturing variation in the characteristics that is

irrelevant in the forecasting objective. Still, after accounting for further components the

difference between PCA and PLS becomes insignificant, suggesting once the whole infor-

mation set is considered the method that is used to construct the components becomes

inconsequential. Overall, our findings have important implications for the use of ma-

chine learning methods in asset pricing applications and help justify the importance of

observable characteristics in explaining the dynamics of factor portfolios.
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Appendix A

Acronym Author(s) Journal Definition

absacc Bandyopadhyay, Huang, & Wirjanto 2010, WP Absolute value of acc.

acc Sloan 1996, TAR Annual income before extraordinary items (ib) mi-

nus operating cash flows (oancf) divided by aver-

age total assets (at); if oancf is missing then set

to change in act – change in che – change in lct +

change in dlc + change in txp–dp.

age Jiang, Lee, & Zhang 2005, RAS Number of years since first Compustat coverage.

agr Cooper, Gulen & Schill 2008, JF Annual percentage change in total assets (at).

baspread Amihud & Mendelson 1989, JF Monthly average of daily bid-ask spread divided

by average of daily spread.

beta Fama & MacBeth 1973, JPE Estimated market beta from weekly returns and

equal weighted market returns for 3 years ending

month t-1 with at least 52 weeks of returns.

betasq Fama & MacBeth 1973, JPE Market beta squared.

bm Rosenberg, Reid, & Lanstein 1985, JPM Book value of equity (ceq) divided by fiscal year

end market capitalization.
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Acronym Author(s) Journal Definition

bm ia Asness, Porter & Stevens 2000, WP Industry adjusted book-to-market ratio.

cashdebt Ou & Penman 1989, JAE Earnings before depreciation and extraordinary

items (ib+dp) divided by avg. total liabilities (lt).

cashpr Chandrashekar & Rao 2009, WP Fiscal year end market capitalization plus long-

term debt (dltt) minus total assets (at) divided by

cash and equivalents (che).

cfp Desai, Rajgopal & Venkatachalam 2004, TAR Operating cash flows divided by fiscal year end

market capitalization.

cfp ia Asness, Porter & Stevens 2000, WP Industry adjusted cfp.

chatoia Soliman 2008, TAR 2-digit SIC fiscal year mean adjusted change in

sales (sale) divided by average total assets (at).

chcsho Pontiff & Woodgate 2008, JF Annual percentage change in shares outstanding

(csho).

chempia Asness, Porter & Stevens 1994, WP Industry-adjusted change in number of employees.

chinv Thomas & Zhang 2002, RAS Change in inventory (inv) scaled by average total

assets (at).
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Acronym Author(s) Journal Definition

chmom Gettleman & Marks 2006, WP Cumulative returns from months t-6 to t-1 minus

months t-12 to t-7.

chpmia Soliman 2008, TAR 2-digit SIC fiscal year mean adjusted change in

income before extraordinary items (ib) divided by

sales (sale).

currat Ou & Penman 1989, JAE Current assets / current liabilities.

depr Holthausen & Larcker 1992, JAE Depreciation over PPE.

dolvol Chordia, Subrahmanyam, & Anshuman 2001, JFE Natural log of trading volume times price per share

from month t-2.

dy Lanstein 1982, JF Total dividends (dvt) divided by market capital-

ization at fiscal year end.

egr Richardson, Sloan, Soliman & Tuna 2005, JAE Annual percentage change in book value of equity

(ceq).

ep Basu 1977, JF Annual income before extraordinary items (ib) di-

vided by end of fiscal year market capitalization.

gma Novy-Marx 2013, JFE Revenues (revt) minus cost of goods sold (cogs)

divided by lagged total assets (at).
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Acronym Author(s) Journal Definition

grcapx Anderson & Garcia-Feijoo 2006, JF Percentage change in capital expenditures from

year t-2 to year t.

grltnoa Fairfield, Whisenant & Yohn 2003, TAR Growth in long term net operating assets.

herf Hou & Robinson 2006, JF 2-digit SIC fiscal year sales concentration (sum of

squared percentage of sales in industry for each

company).

hire Bazdresch, Belo & Lin 2014, JPE Percentage change in number of employees (emp).

idiovol Ali, Hwang, & Trombley 2003, JFE Standard deviation of residuals of weekly returns

on weekly equal weighted market returns for 3

years prior to month end.

ill Amihud 2002, JFM Average of daily (absolute return / dollar volume).

indmom Moskowitz & Grinblatt 1999, JF Equal weighted average industry 12-month re-

turns.

invest Chen & Zhang 2010, JF Annual change in gross property, plant, and equip-

ment (ppegt) + annual change in inventories (invt)

all scaled by lagged total assets (at).
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Acronym Author(s) Journal Definition

lev Bhandari 1988, JF Total liabilities (lt) divided by fiscal year end mar-

ket capitalization.

lgr Richardson, Sloan, Soliman & Tuna 2005, JAE Annual percentage change in total liabilities (lt).

maxret Bali, Cakici & Whitelaw 2011, JFE Maximum daily return from returns during calen-

dar month t-1.

mom12m Jegadeesh 1990, JF 11-month cumulative returns ending one month

before month end.

mom1m Jegadeesh & Titman 1993, JF 1-month cumulative return.

mom36m Jegadeesh & Titman 1993, JF Cumulative returns from months t-36 to t-13.

mom6m Jegadeesh & Titman 1993, JF 5-month cumulative returns ending one month be-

fore month end.

mve Banz 1981, JFE Natural log of market capitalization at end of

month t-1.

mve ia Asness, Porter, & Stevens 2000, WP 2-digit SIC industry-adjusted fiscal year end mar-

ket capitalization.
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Acronym Author(s) Journal Definition

operprof Fama & French 2015, JFE Revenue minus cost of goods sold - SG&A ex-

pense - interest expense divided by lagged common

shareholders’ equity.

pchcapx ia Abarbanell & Bushee 1998, TAR 2-digit SIC fiscal year mean adjusted percentage

change in capital expenditures (capx).

pchcurrat Ou & Penman 1989, JAE Percentage change in currat.

pchdepr Holthausen & Larcker 1992, JAE Percentage change in depreciation.

pchgm pchsale Abarbanell & Bushee 1998, TAR Percentage change in gross margin (sale-cogs) mi-

nus percentage change in sales (sale).

pchquick Ou & Penman 1989, JAE Percentage change in quick.

pchsale pchinvt Abarbanell & Bushee 1998, TAR Annual percentage change in sales (sale) minus an-

nual percentage change in inventory (invt).

pchsale pchrect Abarbanell & Bushee 1998, TAR Annual percentage change in sales (sale) minus an-

nual percentage change in receivables (rect).

pchsale pchxsga Abarbanell & Bushee 1998, TAR Annual percentage change in sales (sale) minus an-

nual percentage change in SG&A (xsga).

pchsaleinv Ou & Penman 1989, JAE Percentage change in saleinv.
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Acronym Author(s) Journal Definition

pctacc Hafzalla, Lundholm & Van Winkle 2011, TAR Same as acc except that the numerator is divided

by the absolute value of ib; if ib = 0 then ib set to

0.01 for denominator.

pricedelay Hou & Moskowitz 2005, RFS The proportion of variation in weekly returns for

36 months ending in month t explained by 4 lags

of weekly market returns incremental to contem-

poraneous market return.

ps Piotroski 2000, JAR Sum of 9 indicator variables to form fundamental

health score.

quick Ou & Penman 1989, JAE (current assets – inventory) / current liabilities.

rd mve Guo, Lev & Shi 2006, JBFA R&D expense divided by end of fiscal year market

capitalization.

rd sale Guo, Lev & Shi 2006, JBFA R&D expense divided by sales (xrd/sale).

retvol Ang et al. 2006, JF Standard deviation of daily returns from month

t-1.
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Acronym Author(s) Journal Definition

roic Brown & Rowe 2007, WP Annual earnings before interest and taxes (ebit)

minus non-operating income (nopi) divided by

non-cash enterprise value (ceq+lt–che).

salecash Ou& Penman 1989, JAE Annual sales divided by cash and cash equivalents.

saleinv Ou& Penman 1989, JAE Annual sales divided by total inventory.

salerec Ou& Penman 1989, JAE Annual sales divided by accounts receivable.

sgr Lakonishok, Shleifer & Vishny 1994, JF Annual percentage change in sales (sale).

sp Barbee, Mukherji, & Raines 1996, FAJ Annual revenue (sale) divided by fiscal year end

market capitalization.

std dolvol Chordia, Subrahmanyam, & Anshuman 2001, JFE Monthly standard deviation of daily dollar trading

volume.

std turn Chordia, Subrahmanyam, & Anshuman 2001, JFE Monthly standard deviation of daily share

turnover.

tang Almeida & Campello 2007, RFS Cash holdings + 0.715 × receivables + 0.547 ×

inventory + 0.535 × PPE/total assets.
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Acronym Author(s) Journal Definition

tb Lev & Nissim 2004, TAR Tax income, calculated from current tax expense

divided by maximum federal tax rate, divided by

income before extraordinary items.

turn Datar, Naik, & Radcliffe 1998, JFM Average monthly trading volume for most recent

3 months scaled by number of shares outstanding

in current month.

zerotrade Liu 2006, JFE Turnover weighted number of zero trading days for

most recent 1 month.

Table A1: Listing of firm characteristics used in the study, including the source and the exact definition.
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Average Return Standard Deviation Sharpe Ratio t-statistic

absacc −0.111 3.982 −0.028 −0.680

acc −0.419 3.009 −0.139 −3.410

age −0.031 3.896 −0.008 −0.196

agr −0.399 3.143 −0.127 −3.110

baspread −0.235 6.796 −0.035 −0.846

beta −0.153 7.854 −0.020 −0.478

betasq −0.146 7.851 −0.019 −0.456

bm 0.377 4.480 0.084 2.061

bm ia 0.250 3.642 0.069 1.677

cashdebt 0.101 3.884 0.026 0.635

cashpr −0.336 3.545 −0.095 −2.323

cfp 0.298 4.181 0.071 1.744

cfp ia 0.328 2.889 0.114 2.781

chatoia 0.269 2.647 0.102 2.490

chcsho −0.588 2.901 −0.203 −4.963

chempia 0.065 2.874 0.023 0.553

chinv −0.537 2.955 −0.182 −4.448

chmom −0.574 4.628 −0.124 −3.037

chpmia 0.028 3.094 0.009 0.220

currat −0.052 3.975 −0.013 −0.322

depr 0.058 4.376 0.013 0.322

dolvol −0.210 3.495 −0.060 −1.471

dy −0.060 5.823 −0.010 −0.254

egr −0.429 3.292 −0.130 −3.191

ep 0.613 4.691 0.131 3.198

gma 0.090 3.832 0.023 0.573
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Average Return Standard Deviation Sharpe Ratio t-statistic

grcapx −0.358 2.941 −0.122 −2.979

grltnoa −0.270 3.010 −0.090 −2.199

herf 0.053 3.508 0.015 0.371

hire −0.217 3.135 −0.069 −1.694

idiovol −0.196 6.923 −0.028 −0.692

ill 0.051 3.688 0.014 0.340

indmom 0.175 4.837 0.036 0.887

invest −0.395 3.003 −0.132 −3.223

lev 0.098 4.550 0.022 0.529

lgr −0.189 2.638 −0.072 −1.758

maxret −0.367 5.778 −0.063 −1.554

mom12m 1.080 6.492 0.166 4.071

mom1m −0.353 5.089 −0.069 −1.696

mom36m −0.204 4.891 −0.042 −1.019

mom6m 0.624 5.896 0.106 2.590

mve −0.161 4.015 −0.040 −0.982

mve ia −0.131 3.212 −0.041 −0.997

operprof 0.248 3.001 0.083 2.021

pchcapx ia 0.066 2.932 0.022 0.549

pchcurrat −0.202 1.906 −0.106 −2.597

pchdepr 0.158 2.518 0.063 1.536

pchgm pchsale 0.125 2.723 0.046 1.126

pchquick −0.063 2.042 −0.031 −0.761

pchsale pchinvt 0.256 2.513 0.102 2.489

pchsale pchrect 0.004 2.399 0.001 0.036

pchsale pchxsga −0.078 3.005 −0.026 −0.632
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Average Return Standard Deviation Sharpe Ratio t-statistic

pchsaleinv 0.224 2.457 0.091 2.230

pctacc −0.175 3.127 −0.056 −1.366

pricedelay −0.077 2.717 −0.028 −0.695

ps 0.250 2.337 0.107 2.614

quick −0.099 3.777 −0.026 −0.641

rd mve 0.243 4.748 0.051 1.253

rd sale −0.109 4.541 −0.024 −0.585

retvol −0.406 6.782 −0.060 −1.464

roic 0.283 3.725 0.076 1.859

salecash 0.019 3.327 0.006 0.141

saleinv 0.146 3.040 0.048 1.175

salerec 0.252 3.486 0.072 1.770

sgr −0.112 3.374 −0.033 −0.809

sp 0.377 4.183 0.090 2.208

std dolvol 0.175 3.080 0.057 1.391

std turn 0.090 5.163 0.017 0.425

tang 0.155 3.423 0.045 1.105

tb 0.195 2.852 0.068 1.676

turn −0.073 5.779 −0.013 −0.308

zerotrade −0.052 5.454 −0.010 −0.235

Table A2: Descriptive statistics of factor portfolios for the sample period January 1970 to December
2019. Average Return: Average monthly return, Standard Deviation: Monthly standard deviation,
Sharpe Ratio: Monthly Sharpe ratio, t-statistic: test statistic of H0: Average monthly return=0.
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Figure A1: Percentage of the variation explained by each PC of factor portfolio returns for the sample
period January 1970 to December 2019.
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